近期,華為AI算法團隊表示在人工智能領域取得顯著突破,研究併發表一種創新的大模型 KV Cache 壓縮算法,稱為「RazorAttention」。
, ?' D! x; D7 Y X' o* p* ] f公仔箱論壇 6 r A" c2 L* x- |3 ]
tvb now,tvbnow,bttvb0 {8 S: c p& u2 e7 [
tvb now,tvbnow,bttvb) f, p0 K% W$ T& e; W1 w
新算法具有卓越的性能表現,可以有效節省高達 70%的大模型推理 RAM 佔用,AI 大模型提供更多的空間,提供強有力的支援。$ a2 [& v. G4 c B! w5 i; A% K
目前相關論文《RazorAttention: Efficient KV Cache Compression Through Retrieval Heads》已被深度學習領域國際頂級會議 ICLR 2025 收錄,可見其重要性。
* i1 d0 T y/ @tvb now,tvbnow,bttvb華為表示,RazorAttention 是業界首個基於 Attention 可解釋性的離線靜態 KV Cache 壓縮算法,打破一直以來 AI 大模型長序列 KV Cache 壓縮不理想的硬傷,減少設備負擔,提高計算速度。www2.tvboxnow.com1 J2 g6 o, e% \9 R
RazorAttention 是通過檢索頭的設定,保證上下文中重要且主要的信息保留,且在保持高精度(誤差小於1%)的前提下,實現靜態有效壓縮最大70% 的 KV Cache RAM 佔用,大大減少 AI 大模型推理的成本。
% `& l7 S, f8 h& K公仔箱論壇值得一提的是,目前 RazorAttention 算法已實現產品化,並集成在昇騰 MindIE/MindStudio,支援主流 8K~1M 長序列 KV Cache 壓縮,在 32K 以上場景增量吞吐提升20%+。 |