返回列表 回復 發帖

[IQ題] 这三个数分别是什么?

有3个正整数,任意两个相乘加1,都是第三个的整数倍,这三个数分别是多少?
$ |! W! J7 u7 t& S% N: E6 Etvb now,tvbnow,bttvb别猜答案,会算的给出过程.
另外,答案没有在题目里直接公布,不知道怎么隐藏,呵呵,所以只好先看看有没有人会了
是1 2 3 tvb now,tvbnow,bttvb  v& O8 V/ o, T* j
因为1的以外的所有正整数都是它的整数倍
好多答案啊``无聊的问题``
1 1 1, because any number can have factor of 1. also, only 1 can be true if any random number multiple plus has to be divided by the remaining digit. So, 1 1 1 is my answer.
249还有123
123 and 789?
three 1
123.。。
1 1 1
我列了个复杂的方程,但解不出了。不过如果不是1、1、1,楼主可能得注明是“三个不同的正整数”
111, 789 ... and many many others.
They would be 111 or 123# E! _' \: n% [5 i/ w
For 111 would be 1x1+1=2 that is 2 times of 3rd 1
* R. j& V3 I1 m" ^( ?+ Z2 Btvb now,tvbnow,bttvbFor 123
" ?' ^9 c$ F: d* }: Q$ n' q) `tvb now,tvbnow,bttvb1x2+1=3 that is 1 time of 3
, ^; H' M9 z) D! wtvb now,tvbnow,bttvb1x3+1=4 that is 2 times of 23 W8 T  X9 L" I
2x3+1=7 thta is 7 times of 1
返回列表