返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。www2.tvboxnow.com! c( Z! n" y% Y3 P" R  ?5 T9 w. W
公仔箱論壇4 o$ {3 g! N4 Z, x  t  t8 ?1 S
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: www2.tvboxnow.com6 D+ u2 L. F! C1 o& g1 M, m* Z& B
www2.tvboxnow.com9 ], L. h9 G$ `' l- x; b
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
* G2 H5 U; d7 o- s6 R, c8 F' ^TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。tvb now,tvbnow,bttvb: a; C: d  e' F6 `8 w7 N$ H, K
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况: www2.tvboxnow.com: o3 E# Y% i* [

1 }# e1 \5 c$ w7 J  @: o  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。 tvb now,tvbnow,bttvb' u4 \5 M3 \% B( u7 P
www2.tvboxnow.com% l' r% j- d' B6 V, b  |
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
( ^6 J2 W. {* C" c" w' U: l4 ]TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。" L$ C$ r) c. ~" r& U0 u4 d
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。www2.tvboxnow.com* N2 b& T! s# ]% h+ K

1 ?1 [* P% A6 z; l" W公仔箱論壇  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
6 R8 _- h) r9 T$ b
/ M4 Q7 n$ m% Y4 }5 D$ R! R公仔箱論壇  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
/ n& j, `2 j6 W+ ]+ d% j2 Stvb now,tvbnow,bttvb
9 A; ^8 |7 Q1 }tvb now,tvbnow,bttvb  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。2 _' c3 a( K# Q

/ V+ l5 c4 a  X- k8 Q公仔箱論壇  这时,可以称第二次了。这次称后可能出现的是三种情况:
& C+ j8 u$ m; F, c" s. ?9 }6 d& p% }. e7 Z5 q- ?6 d
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。 tvb now,tvbnow,bttvb7 l0 y7 t/ t, V$ Z! I, S; b
www2.tvboxnow.com& b2 d! ?/ ?+ k  |0 Y
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
- N# k& G$ w7 b- q
1 s- }2 ^; l& G( t' Wtvb now,tvbnow,bttvb  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
0 b, m& J. k' n- E% MTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
& S7 R0 L; ~2 U  `" D公仔箱論壇  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。) t7 d8 X# s1 F" c
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。8 Z: o: J# z& F: j8 s% [
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
% t+ v8 S, g& y- X9 N4 i: X4 Ptvb now,tvbnow,bttvbtvb now,tvbnow,bttvb( z$ U8 K, L8 h! G# l
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
: T5 M3 o- |! [6 ~( s
6 X4 q+ t+ K9 f  `5 K  |; X; s  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害
4 \8 t' I6 R2 e6 n: Ytvb now,tvbnow,bttvb
- |0 a: o) g9 i+ d1 k( Y% }& \公仔箱論壇[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表