返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。www2.tvboxnow.com/ d( h% e% R$ l# M& w" y9 j+ K
公仔箱論壇- W% x1 {4 o  `2 i1 S' n
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: www2.tvboxnow.com) ]1 t+ y" y0 V4 u! T* ?" m3 Y
4 @* T, ^; Y" o% H9 ^* L* _$ ~- P
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
' A. M3 V, x1 t, |9 n- V0 \TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
  B. m. q0 e$ l! W5 m" m: d公仔箱論壇  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况: # k4 v$ d* o) k% D5 r6 c1 G! A
. v! s, x: p2 p$ \
  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
5 O6 y4 E) D6 U  q6 F+ J3 l7 E公仔箱論壇www2.tvboxnow.com. Y! \7 l/ S! ?2 @! }3 F
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
$ d2 H: N/ Q( Z公仔箱論壇! h$ B& s* w* B- \' n% N
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。
% E3 B8 k! u8 Y* \6 O/ jtvb now,tvbnow,bttvb
8 @' [. [! R2 p  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 tvb now,tvbnow,bttvb# R4 w  s, X# U4 F. M

. K/ R- N) W9 n) q  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 0 O: W# {5 o! B! ]# _
tvb now,tvbnow,bttvb" u- @5 J5 g* J" b( B9 g+ L. w
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。1 g$ y0 I  I$ W; c
tvb now,tvbnow,bttvb4 u4 H& a5 E- q- z* h# ~, _
  这时,可以称第二次了。这次称后可能出现的是三种情况:
" q, P- `; b$ |4 L0 F1 f8 N( o公仔箱論壇( Z, Z5 ^& c7 c" A( c
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
5 R6 }2 z# K. b# @" F2 eTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
8 c6 ]& |% g2 F2 A$ S# s- V& b公仔箱論壇  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。2 A8 H6 n: M! c5 H

4 t. m8 D7 l6 T  C8 m, @tvb now,tvbnow,bttvb  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
7 W# Z& W; Y* W1 o" F& Q& y7 G$ U2 ~www2.tvboxnow.com
) I. a6 Z- S9 L- U% ?9 l  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。
1 |! k6 r  w" k3 `5 C8 y  m9 BTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
9 e0 x1 W7 b# b3 l8 o  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
0 i& L# t1 i% _- ~/ G- uTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。公仔箱論壇  ~% P9 n! t* O
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
9 C/ t4 ^9 Z( [5 ^# z0 {
3 W, }5 P# j, S5 D' |TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害tvb now,tvbnow,bttvb7 u/ J# Y" X% r+ q1 b9 I4 y
公仔箱論壇6 {$ M& P$ |0 @8 Z. F
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表